
Fast Heavy Inner Product Identification Between
Weights and Inputs in Neural Network Training

Lianke Qin
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, CA

lianke@ucsb.edu

Saayan Mitra
Adobe Research

Adobe
San Jose, CA

smitra@adobe.com

Zhao Song
Adobe Research

Adobe
San Jose, CA

zsong@adobe.com

Yuanyuan Yang
Department of Computer Science

University of Washington
Seattle, WA

yyangh@cs.washington.edu

Tianyi Zhou
Department of Computer Science
University of Southern California

Los Angeles, CA
tzhou029@usc.edu

Abstract—In this paper, we consider a heavy inner product
identification problem, which generalizes the Light Bulb prob-
lem ([1]): Given two sets A ⊂ {−1,+1}d and B ⊂ {−1,+1}d
with |A| = |B| = n, if there are exact k pairs whose inner product
passes a certain threshold, i.e., {(a1, b1), · · · , (ak, bk)} ⊂ A×B
such that ∀i ∈ [k], ⟨ai, bi⟩ ≥ ρ · d, for a threshold ρ ∈ (0, 1), the
goal is to identify those k heavy inner products. We provide an
algorithm that runs in O(n2ω/3+o(1)) time to find the k inner
product pairs that surpass ρ · d threshold with high probability,
where ω is the current matrix multiplication exponent. By solving
this problem, our method speed up the training of neural networks
with ReLU activation function.

I. INTRODUCTION

Efficiently finding heavy inner product has been shown useful
in many fundamental optimization tasks such as sparsification
[2], linear program with small tree width [3], [4], frank-wolf [5],
reinforcement learning [6]. In this paper, we define and study
the heavy inner product identification problem, and provide
both a randomized and a deterministic algorithmic solution for
this problem.

Mathematically, we define our main problem as follows:

Definition I.1 (Heavy inner product between two sets). Given
two sets A ⊂ {−1,+1}d and B ⊂ {−1,+1}d with |A| =
|B| = n, which are all independently and uniformly random
except for k vector pairs {(a1, b1), · · · , (ak, bk)} ⊂ A × B
such that ∀i ∈ [k], ⟨ai, bi⟩ ≥ ρ · d for some 0 < ρ ≤ 1. The
goal is to find these k correlated pairs.

We give an example of this problem in Figure 1. A naive
solution to this problem would be, to do a linear scan on every
(a, b) pair, which runs in O(n2d) time. In practice, usually
k is sufficiently small, so that a o(n2d) algorithm might be
possible. This motivates the following question:

Can we design an efficient algorithm to identify the heavy
inner product pair (a, b) ∈ A×B, i.e. runs in o(n2d) time.

We provide a positive answer (Theorem I.2) for the above
question by an algorithmic solution (Algorithm 2). In the
algorithm, we use two pairwise independent hash functions
to partition A and B into h = n2/3 groups of size n1/3

as A1, · · · , Ah and B1, · · · , Bh, respectively. After that, we
compute a score Ci,j for each group pair Ai and Bj to help
identify whether the group pair contains the correlated vector
pair with constant success probability. After repeating the
process for O(log n) times, we can locate the target group
pairs with polynomially low error and brute force search within
group pairs to find the exact heavy inner product vector pairs.
We further accelerate the computation of Ci,j by carefully
designing matrix multiplication.

A. Our results

We state our main results in the following theorem:

Theorem I.2 (Our results, informal version of Theorem IV.1).
For the heavy inner product identification problem defined in
Def. I.1, there is a constant c0 > 0 such that for correlation
ρ, we can find the heavy k pairs {(a1, b1), · · · , (ak, bk)} in
randomized time O(n2ω/3+o(1)) whenever d ≤ c0 log n with
probability at least 1− 1/n10 − k2/n2/3.

For the current fast matrix multiplication algorithm with
ω ≈ 2.373 ([7]), our running time becomes O(n1.582).

B. Technique Overview

We briefly present our techniques in designing the algorithm:
(1) Setting a high probability threshold for the uncorrelated
inner product pairs. (2) Partition A and B into h = n2/3

groups respectively and locate the group pair (i, j) with the
heavy inner product pair by a score Ci,j (3) Accelerate the
computation of score function Ci,j .

a) Set the high probability threshold.: By picking a
threshold v := δ(w/κ) log n, for large enough δ, constant
w and for fixed κ, we have that for each uncorrelated pair

(x, y) ∈ A×B, |⟨x, y⟩| < v with probability at least 1−1/n13.
By a union bound over all possible O(n2) pairs, we have
|⟨x, y⟩| < v for all such x, y with probability at least 1−1/n11.
Let x̃ ∈ A, ỹ ∈ B denote the correlated pairs which satisfy
that ⟨x̃, ỹ⟩ ≥ ρd = v.

50 0 50
Inner Product Value

101

103

105

Co
un

t (
lo

g)

c : 200 n : 1000

(a)

50 0 50
Inner Product Value

101

103

105

Co
un

t (
lo

g)

c : 2000 n : 10000

(b)

50 0 50
Inner Product Value

101

103

105

Co
un

t (
lo

g)

c : 10000 n : 50000

(c)

50 0 50
Inner Product Value

101

103

105

Co
un

t (
lo

g)

c : 20000 n : 100000

(d)

Fig. 1: Simulation for the heavy inner product identification
problem , where the y values are in logarithmic scale. For
each subfigure, we generated two sets A ⊂ {−1,+1}60 and
B ⊂ {−1,+1}60 with |A| = |B| = n, where c pairs of them
are correlated and others are randomized. The values of c, n
are defined in the subfigures. For each entry in the correlated
vector pairs, they have 96% chance to be the same and 4%
chance to be different. For uncorrelated vectors, we randomize
all of them. We randomly pick a pair (a, b) from A×B and
calculate ⟨a, b⟩. We repeat this process 1, 000, 000 times and
get this histogram. We can clearly see that the inner product of
uncorrelated vectors (blue) are distributed around 0, and their
absolute value almost don’t exceed 50, which is smaller than
the dimension of the vector. Additionally, the inner product of
correlated vectors (orange) are distributed around 50. Our goal
is to find these correlated vectors.

b) Locate the group index containing the correlated
vector pairs with Ci,j .: We first partition A and B into
h := n2/3 groups and each group contains g := n1/3 elements.
For each x ∈ A, we pick a random value ax ∈ {−1, 1}
independently and uniformly, and for a constant τ > 0 define
r := ⌈logw(τn1/3)⌉. We define a polynomial p : Rd → R by:

p(z1, . . . , zd) = (z1 + · · ·+ zd)
r.

For each group pair (i, j) we compute a score Ci,j defined as:

Ci,j :=
∑
x∈Ai

∑
y∈Bj

ax · ay · p(x1y1, . . . , xdyd).

If the correlated pair is not in Ai ∈ {−1, 1}d or Bj ∈ {−1, 1}d,
Ci,j has expectation 0. For sufficiently large constant τ , by
the Chebyshev inequality, we have that

|Ci,j | ≤ τn1/3vr/3

with probability at least 3/4. Let θ = τn1/3vr/3.
If we repeat the process of selecting the ax values for each

x ∈ A independently at random O(log n) times, whichever
top k group pairs Ai, Bj has |Ci,j | ≥ 2θ most frequently
will be the pairs containing the heavy inner product vector
pairs with high probability. After identifying the group pairs
which contain the heavy inner product vector pairs, it remains
a brute force search between k pairs of groups, each containing
O(n1/3) vectors to output the result.

{1,2} {1,3} {1,4} {1,5} {2,3}
{2,4} {2,5} {3,4} {3,5} {4,5}
{1} {2} {3} {4} {5}
{∅}

i=2 :

i=1 :

i=0 :

Fig. 2: Example of M1, · · · ,Mt, given d = 5 and r = 2. In
this case, t = 16 as there are

∑2
i=0

(
5
i

)
= 16 distinct subsets

M ⊂ [d] of size less than 2.

c) Accelerate computing Ci,j .: Given t =
∑r

i=0

(
d
i

)
, let

M1, . . . ,Mt be an enumeration of all distinct subsets of [d] of
size at most r, we can reorganize Ci,j as

Ci,j =

t∑
s=1

(cs · (
∑
x∈Ai

ax · xMs
) · (

∑
y∈Bj

ay · yMs
))

for some cs, s ∈ [t] that can be computed in poly(r) =
poly log(n) time, where xM := Πi∈Mxi for any M ⊆ [d].

And define the matrices U, V ∈ Zh×t by

Ui,s :=
∑
x∈Ai

ax · xMs
and Vi,s := cs · Ui,s.

Then we know that the matrix product C := UV ⊤ ∈ Zh×h is
exactly the matrix of the values Ci,j we desire and the time
complexity of computing the matrix multiplication is

Tmat(n
2/3, n2/3+o(1), n2/3) = O(n2ω/3+o(1)).

In addition, we further speed up the calculation of matrix U
and V as follows: Let N1, . . . , Nu be an enumeration of all
subsets of [d] of size at most ⌈r/2⌉. For each i ∈ [h], define the
matrices Li, L̃i ∈ Zu×g by Li

s,x := xNs
and L̃i

s,x := ax · xNs
.

Then compute the product P i := LiL̃i⊤ ∈ Ru×u and each
desired entry Ui,s can be found as an entry of the computed
matrix P i. Computing the entries of the Li matrices naively
takes

O(h · u · g · r) = Õ(n · u)
= Õ(n4/3+o(1))

time, and computing the P i ∈ Ru×u takes time

O(h) · Tmat(u, g, u) = O(n(2+ω)/3+o(1)).

They are all bounded by O(n2ω/3+o(1)) time.

d) Roadmap.: We first discuss several related works in
Section II. We then introduce several preliminary definitions
and lemmas in Section III. We present our randomized
algorithm design and its main theorem in Section IV. We
further provide a deterministic algorithm for the heavy inner
product identification problem in Section V. We conclude our
contributions in Section VII.

II. RELATED WORK

a) Correlations on the Euclidean Sphere.: [8] proposed
a randomized hashing algorithm which rounds the Euclidean
sphere to {−1, 1}d. The hash function chooses a uniformly
random hyperplane through the origin, and outputs 1 or −1
depending on which side of the hyperplane a point is on.
[9] proposed an efficient algorithm to solve the light bulb
problem ([1]) where given n input vectors in {−1, 1}d, which
are all independently and uniformly random excepted one
correlated pair of vectors with high inner product. Our problem
is a generalization of theirs, in that our setting has k-correlated
pairs, with small k.

b) Learning Sparse Parities with Noise.: The Light
Bulb Problem was first presented by [10] as a fundamental
illustration of a correlational learning problem. The Light Bulb
Problem may be generally viewed as a particular instance of a
number of other learning theory issues, such as learning sparse
parities with noise, learning sparse juntas with or without noise,
and learning sparse DNF [11]. Notably, [11] demonstrated that
all of these more complex learning issues can be reduced to
the Light Bulb Problem as well, and they provide best Light
Bulb Problem algorithms following from the fastest known
algorithms by applying this reduction.

c) Acceleration via high-dimensional search data struc-
ture.: Finding points in certain geometric query regions can
be done efficiently with the use of high-dimensional search
data structures. One popular technique is Locality Sensitive
Hashing(LSH) [12], which enables algorithms to find the close
points. For example, small ℓ2 distance [13], [14], [15], [16],
[17] or large inner product between a query vector q ∈ Rd and
a dataset S ⊂ Rd [18], [19], [20]. Further, [3], [4] propose that
finding heavy inner product can be used to give fast algorithm
linear program with small treewidth.

Besides LSH, space partitioning data structures like partition
trees [21], [22], [23], [24], k-d trees [25], [26] can also be
leveraged to search the regions.

d) Sketching: Sketching is a well-known technique to
improve performance or memory complexity [27]. It has wide
applications in linear algebra, such as linear regression and
low-rank approximation[27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], training over-parameterized neural
network [39], [40], [41], empirical risk minimization [42],
[43], linear programming [42], [44], [45], [46], distributed
problems [47], [48], [49], clustering [50], generative adver-
sarial networks [51], kernel density estimation [52], tensor
decomposition [53], trace estimation [54], projected gradient
descent [55], [5], matrix sensing [56], [57], softmax regression
[58], [59], [60], [61], [62], John Ellipsoid computation [63],

[64], semi-definite programming [65], kernel methods [66],
[67], [68], [69], adversarial training [70], cutting plane method
[71], discrepancy [72], federated learning [73], [74], kronecker
protection maintenance [75], reinforcement learning [76], [77],
[6], relational database [78].

III. PRELIMINARY

a) Notations.: For any natural number n, we use [n]
to denote the set {1, 2, . . . , n}. We use A⊤ to denote the
transpose of matrix A. For a probabilistic event f(x), we
define 1{f(x)} such that 1{f(x)} = 1 if f(x) holds and
1{f(x)} = 0 otherwise. We use Pr[·] to denote the probability,
and use E[·] to denote the expectation if it exists. For a matrix
A, we use tr[A] for trace of A. We use Tmat(a, b, c) to denote
the time of multiplying an a × b matrix with another b × c
matrix. For a vector x ∈ {−1, 1}d, we will use xi to denote
the i-th entry of x for any i ∈ [d], and xM := Πi∈Mxi for
any M ⊆ [d]. For two sets A and B, we use A⊕B to denote
the symmetric difference of A and B.

We give the fast matrix multiplication time notation in the
following definition.

Definition III.1 (Matrix Multiplication). We use Tmat(a, b, c)
to denote the time of multiplying an a× b matrix with another
b × c matrix. We use ω to denote the number such that
Tmat(n, n, n) = nω . Usually ω is called the exponent of matrix
multiplication. Currently, ω ≈ 2.373 [79], [80].

We will use Hoeffding bound and the Chebyshev’s inequality
as a probability tool.

Lemma III.2 (Hoeffding bound [81]). Let X1, · · · , Xn denote
n independent bounded variables in [ai, bi]. Let X =

∑n
i=1 Xi,

then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp(− 2t2∑n
i=1(bi − ai)2

)

Lemma III.3 (Chebyshev’s inequality). Let X be a random
variable with expectation µ and standard deviation σ. Then
for all c > 0, we have:

Pr[|X − µ| ≥ cσ] ≤ 1

c2

Next, we present the definition of hash function here. Usually,
hashing is used in data structures for storing and retrieving
data quickly with high probability.

Definition III.4 (Hash function). A hash function is any
function that projects a value from a set of arbitrary size
to a value from a set of a fixed size. Let U be the source set
and D be the target set, we can define the hash function h as:
h : U → D

We will need partition the input sets A ⊂ {−1, 1}d and
B ⊂ {−1, 1}d into groups using the pairwise independent
hashing function. The following definition shows the collision
probability of pairwise independent hash functions.

Definition III.5 (Pairwise independence). A family H = {h :
U → R} is said to be pairwise independent if for any two

distinct elements x1 ̸= x2 ∈ U , and any two (possibly equal)
values y1, y2 ∈ R such that:

Pr
h∈H

[h(x1) = y1 and h(x2) = y2] =
1

|R|2

where R is a set with finite elements.

IV. ALGORITHM FOR LARGE INNER PRODUCT BETWEEN
TWO SETS

Algorithm 1 Algorithm for finding the heavy group pairs and
finding the heavy inner product pair within one group pair.

1: data structure
2: members
3: θ ∈ R ▷ The threshold for group pair score Ci,j

4: end members
5:
6: procedure FINDHEAVYGROUPPAIRS({A1, · · · , Ah} ⊂
{−1, 1}d, {B1, · · · , Bh} ⊂ {−1, 1}d, n ∈ N+, t ∈ N+)

7: R← ∅
8: for ℓ = 1→ 10 log(n) do
9: for i = 1→ h do

10: for j = 1→ h do ▷ Pick ax, by ∈ {−1, 1} at
uniformly random

11: Ci,j =
∑t

s=1[cs · (
∑

x∈Ai
ax · xMs) ·

(
∑

y∈Bj
ay · yMs)]

12: if Ci,j ≥ 2θ then
13: R.APPEND((i, j))
14: end if
15: end for
16: end for
17: end for ▷ |R| = 10k log(n)
18: return R
19: end procedure
20:
21: procedure SOLVEONEGROUPPAIR(Ai ⊂ {−1, 1}d, Bj ⊂
{−1, 1}d, g ∈ N+)

22: for q = 1→ g do ▷ Brute force search within each
group pair

23: for l = 1→ g do
24: if ⟨Ai,q, Bj,l⟩ ≥ ρd then
25: return (i · g + q, j · g + l) ▷ Find the

heavy inner product vector pair within group Ai and Bj

26: end if
27: end for
28: end for
29: end procedure
30: end data structure

a) Roadmap.: In this section, we first present our main
result (Theorem IV.1) for the problem defined in Definition I.1
and its corresponding algorithm implementation in Algorithm 1
and Algorithm 2. In Section IV-A we present the correctness
lemma and proof for our algorithm. In Section IV-B we present
the lemma and proof for our partition based on pairwise

Algorithm 2 Algorithm for heavy inner product between two
sets problem.

1: data structure
2: procedure FINDCORRELATED(A ⊂ {−1, 1}d, B ⊂
{−1, 1}d, n ∈ N+, k ∈ N+, τ ∈ R+, w ∈ R+, ρ ∈
(0, 1), δ ∈ R)

3: Choose two pairwise independent hash functions
hA, hB : {−1, 1}d → [n2/3]

4: h ← n2/3, g ← n1/3, v ← δ(w/κ) log n, r ←
⌈logw(τn1/3)⌉, θ ← τn1/3vr/3

5: t←
∑r

i=0

(
d
i

)
6: Partition A into h groups A1, · · · , Ah and B into

B1, · · · , Bh. Each contains g vectors.
7: R← FINDHEAVYGROUPPAIRS({A1, · · · , Ah},
8: {B1, · · · , Bh}, n, t) ▷ Time complexity is O(n2ω/3+o(1)),

Algorithm 1
9: F ← ∅

10: for ℓ = 1→ |R| do
11: (i, j)← Rℓ

12: p← SOLVEONEGROUPPAIR(Ai, Bj , g) ▷
Algorithm 1

13: F.APPEND(p)
14: end for
15: return F
16: end procedure
17: end data structure

independent hash function. We present the time complexity
analysis our algorithm in Section IV-C.

Theorem IV.1 (Formal version of Theorem I.2). Given two
sets A ⊂ {−1,+1}d and B ⊂ {−1,+1}d with |A| = |B| = n,
which are all independently and uniformly random except for
k vector pairs {(a1, b1), · · · , (ak, bk)} ⊂ A × B such that
∀i ∈ [k], ⟨ai, bi⟩ ≥ ρ · d, for some 0 < ρ ≤ 1. For every
ϵ, ρ > 0, there is a c0 > 0 such that for correlation ρ, we can
find the k pairs {(a1, b1), · · · , (ak, bk)} in randomized time

O(n2ω/3+o(1))

whenever d = c0 log n with probability at least 1− 1/n10 −
k2/n2/3.

Proof. The correctness of the theorem follows by Lemma IV.2,
and the proof of running time follows by Lemma IV.7.

A. Correctness of FINDCORRELATED Algorithm

We first present the following lemma to prove the correctness
of FINDCORRELATED in Algorithm 2.

Lemma IV.2 (Correctness). For problem in Defnition I.1, and
for every ϵ, ρ > 0, there is a c0 > 0 such that for correlation
ρ we can find the k pairs {(a1, b1), · · · , (ak, bk)} whenever
d = c0 log n with probability at least 1− 1/n10 − k2/n2/3.

Proof. For two constants δ, w > 0 to be determined, we will
pick c0 = δw2/ρ2. Let A,B ⊂ {−1, 1}d be the set of input

vectors, and let x̃ ∈ A, ỹ ∈ B denote the heavy inner product
pairs which we are trying to find.

For distinct x ∈ A, y ∈ B other than the heavy inner
product pairs, the inner product ⟨x, y⟩ is a sum of d uniform
independent {−1, 1} values.

Let v := δ(w/κ) log n. For large enough δ, by a Hoeffding
bound stated in Lemma III.2 we have:

Pr[|⟨x, y⟩ − E[⟨x, y⟩]| ≥ v]

= Pr[|⟨x, y⟩| ≥ v]

≤ 2 exp(− v2

2n
)

= 2 exp(− δ2w2

2nκ2 log2(n)
)

≤ 1/n13

where the first step follows that E[⟨x, y⟩] = 0, the second
step follows Hoeffding bound (Lemma III.2), the third step
comes from v = δ(w/κ) log n, and the fourth step follows
that δ2 ≥ 26nκ2 log3(n)

w2 . Therefore, we have |⟨x, y⟩| < v with
probability at least 1− 1/n13.

Hence, by a union bound over all n2−k pairs of uncorrelated
vectors , we have |⟨x, y⟩| < v for all such x, y with probability
at least 1− 1/n11. We assume henceforth that this is the case.
Meanwhile, ⟨x̃, ỹ⟩ ≥ ρd = wv.

Arbitrarily partition A ⊂ {−1, 1}d into h := n2/3 groups
A1, . . . , Ah ⊂ {−1, 1}d of size g := n/h = n1/3 per group,
and partition B ⊂ {−1, 1}d into h groups B1, . . . , Bh ⊂
{−1, 1}d of size g per group too. According to Lemma IV.3,
we condition on that none of the group pair contains more
than one heavy inner product vector pair.

For each x ∈ A, our algorithm picks a value ax ∈ {−1, 1}
independently and uniformly at random. For a constant τ > 0
to be determined, let

r := ⌈logw(τn1/3)⌉,

and define the polynomial p : Rd → R by

p(z1, . . . , zd) = (z1 + · · ·+ zd)
r.

Our goal is, for each (i, j) ∈ [h]2, to compute the value

Ci,j :=
∑
x∈Ai

∑
y∈Bj

ax · ay · p(x1y1, . . . , xdyd). (1)

First we explain why computing Ci,j is useful in locating
the groups which contain the correlated pair.

Denote

p(x, y) := p(x1y1, . . . , xdyd).

Intuitively, p(x, y) is computing an amplification of ⟨x, y⟩.
Ci,j sums these amplified inner products for all pairs (x, y) ∈
Ai ×Bj . We can choose our parameters so that the amplified
inner product of the correlated pair is large enough to stand
out from the sums of inner products of random pairs with high
success probability.

Let us be more precise. Recall that for uncorrelated x, y we
have |⟨x, y⟩| ≤ v, and hence |p(x, y)| ≤ vr

Similarly, we have

|p(x̃, ỹ)| ≥ (wv)r ≥ τn1/3vr.

where the first step comes from (x̃, ỹ) is the correlated pair ,
and the second step comes from r = ⌈logw(τn1/3)⌉

For x ∈ A, y ∈ B, define

a(x,y) := ax · ay.

Notice that,

Ci,j =
∑

x∈Ai,y∈Bj

a(x,y) · p(⟨x, y⟩),

where the a(x,y) are pairwise independent random {−1, 1}
values.

We will now analyze the random variable Ci,j where we
think of the vectors in A and B as fixed, and only the values
ax as random. Consider first when the correlated pair are not
in Ai ∈ {−1, 1}d and Bj ∈ {−1, 1}d. Then, Ci,j has mean
0 , and (since variance is additive for pairwise independent
variables) Ci,j has variance at most

|Ai| · |Bj | · max
x∈Ai,y∈Bj

|p(⟨x, y⟩)|2 ≤ n2/3 · v2r.

For a constant τ =
√
10, we have that

Pr[|Ci,j | ≤ τ/3 · n1/3vr] ≥ 9

τ2
= 9/10

where the first step follows that Ci,j has mean 0, σ = n1/3vr

and the Chebyshev inequality from Lemma III.3, and the second
step comes from τ =

√
10.

Let θ = τn1/3vr/3, so |Ci,j | ≤ θ with probability at least
9/10. Meanwhile, if x̃ ∈ Ai and ỹ ∈ Bj , then Ci,j is the sum
of a(x̃,ỹ)p(⟨x̃, ỹ⟩) and a variable C ′ distributed as Ci,j was in
the previous paragraph.

Hence, since |p(⟨x̃, ỹ⟩)| ≥ τn1/3vr = 3θ, and |C ′| ≤ θ with
probability at least 9/10, we get by the triangle inequality that
|Ci,j | ≥ 2θ with probability at least 9/10.

Hence, if we repeat the process of selecting the ax values
for each x ∈ A independently at random 10 log n times, and
check all group pairs (Ai, Bj) having |Ci,j | ≥ 2θ in a brute
force manner to locate the heavy inner product vector pairs.
For each group pair brute force check, the time complexity
is O(n2/3) and there are 10k log n group pairs to check. The
failure probability is 1− k/n11.

In all, by a union bound over all possible errors and the
probability that any group pair contains more than one heavy
inner product vector pairs from Lemma IV.3, this will succeed
with probability at least

1− (k + 1)/n11 − k2/n2/3 ≥ 1− 1/n10 − k2/n2/3

B. Partition Collision Probability

In the following lemma, we prove that if there are k heavy
inner product vector pairs in A and B, the probability of none
of the group pair contains more than one heavy inner product
vector pair is 1− k2/n2/3.

Lemma IV.3. With two pairwise independent hash function hA

and hB , we partition two sets A,B ⊂ {−1, 1}d into h = n2/3

groups respectively. Suppose there are k heavy vector inner
product pairs {(a1, b1), · · · , (ak, bk)} ⊂ A×B, the probability
where none of the group pair contains more than one heavy
inner product vector pair is 1− k2/n2/3.

Proof. If any two vector pairs (ax, bx), (ay, by) ∈
{(a1, b1), · · · , (ak, bk)} ⊂ A × B collide in a group
pair (Ai, Bj), according to the collision property of hash
function hA and hB , the probability is n−2/3. By union bound
across all k2 possible heavy inner product vector pairs, we
know that the probability of none of any two vector pairs
in {(a1, b1), · · · , (ak, bk)} collide into the same group is
1− k2/n2/3.

This completes the proof.

C. Running Time of FINDCORRELATED Algorithm

We split the time complexity of FINDCORRELATED in
Algorithm 2 into two steps and analyze the first step in
Lemma IV.4.

1) Running time of finding heavy group pairs:

Lemma IV.4 (Time complexity of FINDHEAVYGROUPPAIRS).
For every ϵ, ρ > 0, FINDHEAVYGROUPPAIRS in Algorithm 1
for heavy inner product between two sets problem in Defini-
tion I.1 of correlation ρ runs in

O(n2ω/3+o(1))

time with a c0 > 0 and d = c0 log n to find all the group pairs
which contains the heavy inner product vector pairs.

Proof. Before computing Ci,j , we will rearrange the expression
for Ci,j into one which is easier to compute. Since we are
only interested in the values of p when its inputs are all in
{−1, 1}, we can replace p with its multilinearization p̂.

Let M1, . . . ,Mt be an enumeration of all subsets of [d] of
size at most r, thus we know t can be calculated as follows:

t =

r∑
i=0

(
d

i

)
.

Then, there are coefficients c1, . . . , ct ∈ Z such that

p̂(x) =

t∑
s=1

csxMs
.

Rearranging the order of summation of Eq. (1) , we see that
we are trying to compute

Ci,j =

t∑
s=1

∑
x∈Ai

∑
y∈Bj

ax · ay · cs · xMs · yMs

=

t∑
s=1

(cs · (
∑
x∈Ai

ax · xMs
) · (

∑
y∈Bj

ay · yMs
)) (2)

In order to compute Ci,j , we first need to compute the
coefficients cs. Notice that cs depends only on |Ms| and
r. We can thus derive a simple combinatorial expression
for cs, and hence compute all of the cs coefficients in
poly(r) = polylog(n) time. Alternatively, by starting with the
polynomial (z1 + · · ·+ zd) and then repeatedly squaring then
multilinearizing, we can easily compute all the coefficients in
O(t2polylog(n)) time; this slower approach is still fast enough
for our purposes.

Define the matrices U, V ∈ Zh×t by

Ui,s :=
∑
x∈Ai

ax · xMs and Vi,s := cs · Ui,s.

Notice from Eq. (2) that the matrix product C := UV ⊤ ∈
Zh×h is exactly the matrix of the values Ci,j we desire.

A simple calculation (see Lemma IV.5 below) shows that
for any ϵ > 0, we can pick a sufficiently big constant w > 0
such that t = O(n2/3+o(1)).

Since h = O(n2/3), if we have the matrices U, V , then we
can compute this matrix product in

Tmat(n
2/3, n2/3+o(1), n2/3) = O(n2ω/3+o(1))

time, completing the algorithm.
Unfortunately, computing the entries of U and V naively

would take Ω(h · t · g) = Ω(n5/3) time, which is slower than
we would like.

Let N1, . . . , Nu be an enumeration of all subsets of [d]
of size at most ⌈r/2⌉. For each i ∈ [h], define the matrices
Li, L̃i ∈ Zu×g (whose columns are indexed by elements x ∈
Ai) by

Li
s,x := xNs

and L̃i
s,x := ax · xNs

.

Then compute the product P i := LiL̃i⊤ ∈ Ru×u. We can see
that

P i
s,s′ =

∑
x∈Ai

ax · xNs⊕Ns′ ,

where Ns ⊕Ns′ is the symmetric difference of Ns and Ns′ .
Since any set of size at most r can be written as the symmetric
difference of two sets of size at most ⌈r/2⌉, each desired
entry Ui,s can be found as an entry of the computed matrix
P i. Similar to our bound on t from before (see Lemma IV.5
below), we see that for big enough constant w, we have u =
O(n1/3+o(1)). Computing the entries of the Li matrices naively
takes only

O(h · u · g · r) = Õ(n · u)
= Õ(n4/3+o(1))

time, and then computing the products P i ∈ Ru×u takes time

O(h) · Tmat(u, g, u) = O(n(2+ω)/3+o(1)).

Both of these are dominated by O(n2ω/3+o(1)). This completes
the proof.

We will need the following lemma to prove the time
complexity of our algorithm.

Lemma IV.5. Let d = O(w2 log(n)) and n = |A| = |B| be
the vector dimension and number of vectors in Theorem IV.1,
and let

r := ⌈logw(τn1/3)⌉, u :=

(
d

r/2

)
, t :=

(
d

r

)
For every ϵ > 0, and there is a w > 0 such that we can bound

t = O(n2/3+o(1)), u = O(n1/3+o(1)).

Lemma IV.5 implies that for any ϵ > 0, we can find a
sufficiently large w to bound the time needed to compute UV ⊤

and P i := LiL̃i⊤.

Proof. Recall that r = logw(O(n1/3)). We can upper bound t
as follows:

t ≤ (r + 1) ·
(
d

r

)
≤ (r + 1) · (ed/r)r

≤ O(w2 log(w))logk(O(n1/3))

= n2/3+O(log log(w)/ log(w))

where the first step follows from t =
∑r

i=0

(
d
i

)
≤ (r+1) ·

(
d
r

)
,

the second step follows that
(
d
r

)
≤ (ed/r)r, the third step

comes from the value of d and r, and the final step comes
from aloga n = n. For any ϵ > 0 we can thus pick a sufficiently
large w so that t ≤ O(n2/3+o(1)).

We can similarly upper bound
(

d
r/2

)
≤ O(n1/3+o(1)) which

implies our desired bound on u.
This completes the proof.

2) Running time of solving heavy group pairs: Then we
analyze the time complexity of solving heavy group pairs in
Lemma IV.6.

Lemma IV.6 (Time complexity of solving heavy group pairs
). For every k, ρ > 0, solving the heavy group pairs in
Algorithm 1 for heavy inner product between two sets problem
in Definition I.1 of correlation ρ runs in Õ(k · n2/3) time.

Proof. Recall that for finding the heavy group pairs of FIND-
CORRELATED algorithm, we use two pairwise independent
hash function hA and hB to partition A into h := n2/3 groups
A1, . . . , Ah of size g := n/h = n1/3 per group, and partition
B into h groups B1, . . . , Bh of size g per group too.

Because we have found 10k log n group pairs
{(Ai,1, Bj,1), · · · , (A1,k, Bj,k)} which contain the
k heavy inner product vector pairs at the end of
FINDHEAVYGROUPPAIRS with high probability, a brute
force within these group pairs of O(n1/3) vectors can find
the correlated pair in Õ(k · n2/3) time. This completes the
proof.

3) Overall running time: With the above two lemmas in
hand, we can obtain the overall time complexity of FINDCOR-
RELATED algorithm in Lemma IV.7.

Lemma IV.7 (Time complexity). For problem in Defini-
tion I.1, and for every ρ > 0, there is algorithm (Algo-
rithm 2) such that for correlation ρ we can find the k pairs
{(a1, b1), · · · , (ak, bk)} whenever d = c0 log n in

O(n2ω/3+o(1))

time.

Proof. The proof follows by Lemma IV.4 and Lemma IV.6.
We can obtain the overall time complexity by:

total time = O(n2ω/3+o(1)) + Õ(k · n2/3)

= O(n2ω/3+o(1))

where the first step comes from the time complexity of
FINDHEAVYGROUPPAIRS and solving all heavy group pairs
in Lemma IV.4 and Lemma IV.6, and the second step follows
that

O(n2ω/3+o(1)) > Õ(k · n2/3).

This completes the proof.

V. DETERMINISTIC ALGORITHM

We now present a deterministic algorithm for the heavy inner
product between two sets problem. Each is a slight variation
on the algorithm from the previous section.

Lemma V.1. For every ρ > 0, there is a c0 > 0 and a
deterministic algorithm (FINDCORRELATED in Algorithm 3)
such that the heavy inner product between two sets problem in
Definition I.1 of correlation ρ can be solved in deterministic
time O(n2ω/3+o(1)) on almost all instances whenever d =
c0 log n.

Proof. In the randomized algorithm described in Algorithm 1,
the only randomness used is the choice of independently and
uniformly random ax ∈ {−1, 1} for each x ∈ A and the
two pairwise independent hash functions, which requires Θ(n)
random bits.

Because we repeat the entire algorithm Θ(log n) times to
get the correctness guarantee with high success probability, we
need Θ(n log n) random bits in total.

By standard constructions, we can use O(log n) independent
random bits to generate n pairwise-independent random bits
for the pairwise-independent ax variables. Therefore, we only
needs O(log2 n) independent random bits in the FINDCORRE-
LATED algorithm. We can also use the bits to construct two
pairwise independent hash functions used for partitioning the
input sets into groups.

Our deterministic algorithm executes as follows:
• Choose the same c0 value as in Theorem IV.1.
• Let A,B ⊂ {−1, 1}d be the input vectors. Initialize an

empty set Ã ⊂ {−1, 1}d.

Algorithm 3 Deterministic algorithm for heavy inner product between two sets problem.

1: procedure FINDRANDOMBITS(A ⊂ {−1, 1}d, B ⊂ {−1, 1}d, ρ ∈ (0, 1), n ∈ N+)
2: Initialize an empty set Ã
3: for i = 1→ n do
4: r ← 0
5: for j = 1→ n do
6: if ⟨ai, bj⟩ ≥ ρd then
7: r ← 1 ▷ If the inner product of vector ai and bj surpass the threshold, we set r := 1.
8: end if
9: end for

10: if r = 0 then
11: Ã.APPEND(ai) ▷ If ai is a random vector, we include it in the set Ã.
12: end if
13: if |Ã| ≥ log n then
14: Break ▷ We have collected enough random vector for next step.
15: end if
16: end for
17: return Ã
18: end procedure
19: procedure FINDCORRELATED(A ⊂ {−1, 1}d, B ⊂ {−1, 1}d, n ∈ N+, k ∈ N+, τ ∈ R+, w ∈ R+, ρ ∈ (0, 1), δ ∈ R)
20: Choose two pairwise independent hash functions hA, hB : {−1, 1}d → [n2/3]
21: h← n2/3, g ← n1/3, v ← δ(w/κ) log n, r ← ⌈logw(τn1/3)⌉, θ ← τn1/3vr/3
22: t←

∑r
i=0

(
d
i

)
23: Partition A into h groups A1, · · · , Ah and B into h groups B1, · · · , Bh. Each contains g vectors.
24: Ã← FINDRANDOMBITS(A,B, ρ, n) ▷ Time complexity is O(n log2(n))
25: R← FINDHEAVYGROUPPAIRS({A1, · · · , Ah}, {B1, · · · , Bh}, n, t)
26: ▷ Time complexity is O(n2ω/3+o(1)). The ax and ay generation uses the random bits from Ã. Algorithm 1
27: F ← ∅ ▷ We use set F to store all correlated vector pairs
28: for ℓ = 1→ |R| do
29: (i, j)← Rℓ ▷ Obtain the group pair index which contains heavy inner product vector pair
30: p← SOLVEONEGROUPPAIR(Ai, Bj , g) ▷ Algorithm 1
31: F.APPEND(p)
32: end for
33: return F
34: end procedure

• For i = 1→ n, brute-force test whether ai is correlated
with any vector in B, where ai is a vector in A. If not,
we save ai into Ã until |Ã| = Θ(log n). We can assume
that the vectors in Ã are all uniformly random vectors
from {−1, 1}d, because they do not produce heavy inner
product with any vector in B. This can be done in O(|Ã| ·
|B| · d) = O(n log2(n)) time.

• we can use Ã as d·|Ã| = Θ(log2 n) independent uniformly
random bits. We thus use them as the required randomness
to run the FINDCORRELATED on input vectors in A and
B. That algorithm has polynomially low error according
to Theorem IV.1.

Because the time spent on checking if a subset Ã contains the
heavy inner product pair is only O(n log2(n)), and the second
part of Algorithm 3 takes O(n2ω/3+o(1)) time according to
Theorem IV.1, we have the overall time complexity:

O(n log2(n)) +O(n2ω/3+o(1)) = O(n2ω/3+o(1))

This completes the proof.

VI. SPEEDUP NEURAL NETWORKS TRAINING

The training of a neural network usually consists of forward
and backward propagation, which includes the computations as
a function of the input, the network weights and the activation
functions. In practice, not all neurons are activated so we can
use shifted ReLU function [39]: σ(x) = max{⟨wr, x⟩, br}
to speedup the training. Then it’s possible that there is an
algorithm whose running time outperforms the naive “calculate
and update” method, by detecting the activated neurons and
update accordingly. This setting coincides with heavy inner
product identification: We can view the forward propagation of
the neural network as 1) identify the heavy inner product, where
the goal is to identify the heavy inner product (between input
and weight) which surpasses the activation function threshold
and activates corresponding neurons. 2) forward the neurons

with heavy inner product to the next layer, and update the
desired function accordingly.

Definition VI.1 (Two Layer Fully Connected Neural Network).
We will consider two-layer fully connected neural networks
with m hidden neurons using shifted ReLU σ : R→ R as the
activation function. We first define the two-layer shifted ReLU
activation neural networkf(x) :=

∑m
r=1 ar ·στ (⟨wr, x⟩) where

στ (z) = max{z, τ} is the shifted ReLU activation function,
{wr}mr=1 ⊂ Rd is the weight vector, {ar}mr=1 ⊂ R is the output
weight vector, and x ∈ Rd is the input vector.

Consider activation threshold τ = ρd. In each iteration of
gradient descent, it is necessary for us to perform prediction
computations for each point in the neural network. For each
input vector xi ∈ Rd, it needs to compute m inner product in
d dimensions. Therefore, Θ(mnd) time is a natural barrier to
identify which weight and input index pairs surpass the shifted
ReLU activation function threshold τ per training iteration.

When the neurons are sparsely activated, such a naive linear
scan of the neurons is what we want to avoid. We want to locate
the heavy inner product pairs that activate the neurons between
the weight vectors {wr}mr=1 ⊆ Rd and input vectors {xi}ni=1 ⊆
Rd. The methods we proposed in this paper can solve this
problem efficiently. For the ReLU, it has been observed that the
number of neurons activated by ReLU is small, so our method
may potentially speed up optimization for those settings as
well.

VII. CONCLUSION

In this paper, we design efficient algorithms to identify
heavy inner product between two different sets. Given two sets
A ⊂ {−1,+1}d and B ⊂ {−1,+1}d with |A| = |B| = n, we
promise that we can find k pairs of (a, b) ∈ A × B such
that all of them satisfy ⟨a, b⟩ ≥ ρ · d, for some constant
ρ. Both the deterministic and the probabilistic algorithm
run in O(n2ω/3+o(1)) = O(n1.582+o(1)) time to find all the
heavy inner product pairs with high probability. In general,
our algorithm will consume energy when running, but the
theoretical guarantee helps speedup solving the heavy inner
product identification problem. However, there are still some
limitations of our works. For example, whether how we
calculate the correlation between groups is the most efficient
way to the heavy inner product problem. As far as we know,
our work does not have any negative societal impact.

REFERENCES

[1] R. Paturi, S. Rajasekaran, and J. H. Reif, “The light bulb problem,” in
COLT, vol. 89. Citeseer, 1989, pp. 261–268.

[2] Z. Song, Z. Xu, and L. Zhang, “Speeding up sparsification with inner
product search data structures,” arXiv preprint arXiv:2204.03209, 2022.

[3] G. Ye, “Fast algorithm for solving structured convex programs,” The
University of Washington, Undergraduate Thesis, 2020.

[4] S. Dong, Y. T. Lee, and G. Ye, “A nearly-linear time algorithm for
linear programs with small treewidth: a multiscale representation of
robust central path,” in Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, 2021, pp. 1784–1797.

[5] Z. Xu, Z. Song, and A. Shrivastava, “Breaking the linear iteration cost
barrier for some well-known conditional gradient methods using maxip
data-structures,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[6] A. Shrivastava, Z. Song, and Z. Xu, “Sublinear least-squares value
iteration via locality sensitive hashing,” CoRR, vol. abs/2105.08285,
2021. [Online]. Available: https://arxiv.org/abs/2105.08285

[7] J. Alman and V. V. Williams, “A refined laser method and faster matrix
multiplication,” in Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA). SIAM, 2021, pp. 522–539.

[8] M. S. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, 2002, pp. 380–388.

[9] J. Alman, “An illuminating algorithm for the light bulb problem,” arXiv
preprint arXiv:1810.06740, 2018.

[10] L. G. Valiant, “Functionality in neural nets.” in COLT, vol. 88, 1988,
pp. 28–39.

[11] V. Feldman, P. Gopalan, S. Khot, and A. K. Ponnuswami, “On agnostic
learning of parities, monomials, and halfspaces,” SIAM Journal on
Computing, vol. 39, no. 2, pp. 606–645, 2009.

[12] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing, 1998, pp. 604–613.

[13] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proceedings of the
twentieth annual symposium on Computational geometry, 2004, pp. 253–
262.

[14] A. Andoni and I. Razenshteyn, “Optimal data-dependent hashing for
approximate near neighbors,” in Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, 2015, pp. 793–801.

[15] A. Andoni, I. Razenshteyn, and N. S. Nosatzki, “Lsh forest: Practical
algorithms made theoretical,” in Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2017, pp. 67–78.

[16] A. Andoni, P. Indyk, and I. Razenshteyn, “Approximate nearest neighbor
search in high dimensions,” in Proceedings of the International Congress
of Mathematicians: Rio de Janeiro 2018. World Scientific, 2018, pp.
3287–3318.

[17] Y. Dong, P. Indyk, I. Razenshteyn, and T. Wagner, “Learning space
partitions for nearest neighbor search,” arXiv preprint arXiv:1901.08544,
2019.

[18] A. Shrivastava and P. Li, “Asymmetric lsh (alsh) for sublinear time
maximum inner product search (mips),” Advances in neural information
processing systems, vol. 27, 2014.

[19] ——, “Improved asymmetric locality sensitive hashing (alsh) for maxi-
mum inner product search (mips),” in 31st Conference on Uncertainty
in Artificial Intelligence, UAI 2015, 2015.

[20] ——, “Asymmetric minwise hashing for indexing binary inner products
and set containment,” in Proceedings of the 24th international conference
on world wide web, 2015, pp. 981–991.

[21] J. Matousek, “Efficient partition trees,” Discrete & Computational
Geometry, vol. 8, no. 3, pp. 315–334, 1992.

[22] ——, “Reporting points in halfspaces,” Computational Geometry, vol. 2,
no. 3, pp. 169–186, 1992.

[23] P. Afshani and T. M. Chan, “Optimal halfspace range reporting in
three dimensions,” in Proceedings of the twentieth annual ACM-SIAM
symposium on Discrete algorithms. SIAM, 2009, pp. 180–186.

[24] T. M. Chan, “Optimal partition trees,” Discrete & Computational
Geometry, vol. 47, no. 4, pp. 661–690, 2012.

[25] C. D. Toth, J. O’Rourke, and J. E. Goodman, Handbook of discrete and
computational geometry. CRC press, 2017.

[26] T. M. Chan, “Orthogonal range searching in moderate dimensions: kd
trees and range trees strike back,” Discrete & Computational Geometry,
vol. 61, no. 4, pp. 899–922, 2019.

[27] K. L. Clarkson and D. P. Woodruff, “Low rank approximation and
regression in input sparsity time,” in Proceedings of the 45th Annual
ACM Symposium on Theory of Computing (STOC), 2013.

[28] J. Nelson and H. L. Nguyên, “Osnap: Faster numerical linear algebra
algorithms via sparser subspace embeddings,” in Proceedings of the 54th
Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2013.

[29] X. Meng and M. W. Mahoney, “Low-distortion subspace embeddings
in input-sparsity time and applications to robust linear regression,” in
Proceedings of the forty-fifth annual ACM symposium on Theory of
computing (STOC), 2013, pp. 91–100.

[30] I. Razenshteyn, Z. Song, and D. P. Woodruff, “Weighted low rank
approximations with provable guarantees,” in Proceedings of the Forty-
Eighth Annual ACM Symposium on Theory of Computing, ser. STOC
’16, 2016, p. 250–263.

https://arxiv.org/abs/2105.08285

[31] Z. Song, D. P. Woodruff, and P. Zhong, “Low rank approximation with
entrywise ℓ1-norm error,” in Proceedings of the 49th Annual Symposium
on the Theory of Computing (STOC), 2017.

[32] J. Haupt, X. Li, and D. P. Woodruff, “Near optimal sketching of low-rank
tensor regression,” in ICML, 2017.

[33] A. Andoni, C. Lin, Y. Sheng, P. Zhong, and R. Zhong, “Subspace
embedding and linear regression with orlicz norm,” in International
Conference on Machine Learning (ICML). PMLR, 2018, pp. 224–233.

[34] Z. Song, D. Woodruff, and P. Zhong, “Average case column subset
selection for entrywise ℓ1-norm loss,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 32, pp. 10 111–10 121, 2019.

[35] ——, “Towards a zero-one law for column subset selection,” Advances
in Neural Information Processing Systems, vol. 32, pp. 6123–6134, 2019.

[36] H. Diao, R. Jayaram, Z. Song, W. Sun, and D. Woodruff, “Optimal
sketching for kronecker product regression and low rank approximation,”
Advances in neural information processing systems, vol. 32, 2019.

[37] Y. Gu, Z. Song, and L. Zhang, “A nearly-linear time algorithm for
structured support vector machines,” arXiv preprint arXiv:2307.07735,
2023.

[38] Y. Gu, Z. Song, J. Yin, and L. Zhang, “Low rank matrix completion
via robust alternating minimization in nearly linear time,” arXiv preprint
arXiv:2302.11068, 2023.

[39] Z. Song, S. Yang, and R. Zhang, “Does preprocessing help training
over-parameterized neural networks?” Advances in Neural Information
Processing Systems, vol. 34, 2021.

[40] Z. Song, L. Zhang, and R. Zhang, “Training multi-layer over-parametrized
neural network in subquadratic time,” arXiv preprint arXiv:2112.07628,
2021.

[41] A. Zandieh, I. Han, H. Avron, N. Shoham, C. Kim, and J. Shin, “Scaling
neural tangent kernels via sketching and random features,” Advances in
Neural Information Processing Systems, vol. 34, 2021.

[42] Y. T. Lee, Z. Song, and Q. Zhang, “Solving empirical risk minimization
in the current matrix multiplication time,” in COLT, 2019.

[43] L. Qin, Z. Song, L. Zhang, and D. Zhuo, “An online and unified algorithm
for projection matrix vector multiplication with application to empirical
risk minimization,” in International Conference on Artificial Intelligence
and Statistics. PMLR, 2023, pp. 101–156.

[44] S. Jiang, Z. Song, O. Weinstein, and H. Zhang, “Faster dynamic matrix
inverse for faster lps,” in STOC. arXiv preprint arXiv:2004.07470, 2021.

[45] Z. Song and Z. Yu, “Oblivious sketching-based central path method for
solving linear programming problems,” in 38th International Conference
on Machine Learning (ICML), 2021.

[46] S. C. Liu, Z. Song, H. Zhang, L. Zhang, and T. Zhou, “Space-efficient
interior point method, with applications to linear programming and
maximum weight bipartite matching,” in International Colloquium on
Automata, Languages and Programming (ICALP), 2023, pp. 88:1–88:14.

[47] D. P. Woodruff and P. Zhong, “Distributed low rank approximation
of implicit functions of a matrix,” in 2016 IEEE 32nd International
Conference on Data Engineering (ICDE). IEEE, 2016, pp. 847–858.

[48] C. Boutsidis, D. P. Woodruff, and P. Zhong, “Optimal principal component
analysis in distributed and streaming models,” in Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing (STOC),
2016, pp. 236–249.

[49] S. Jiang, D. Li, I. M. Li, A. V. Mahankali, and D. Woodruff, “Streaming
and distributed algorithms for robust column subset selection,” in
International Conference on Machine Learning. PMLR, 2021, pp.
4971–4981.

[50] H. Esfandiari, V. Mirrokni, and P. Zhong, “Almost linear time density
level set estimation via dbscan,” in AAAI, 2021.

[51] C. Xiao, P. Zhong, and C. Zheng, “Bourgan: generative networks with
metric embeddings,” in Proceedings of the 32nd International Conference
on Neural Information Processing Systems (NeurIPS), 2018, pp. 2275–
2286.

[52] L. Qin, A. Reddy, Z. Song, Z. Xu, and D. Zhuo, “Adaptive and dynamic
multi-resolution hashing for pairwise summations,” in BigData, 2022.

[53] Z. Song, D. P. Woodruff, and P. Zhong, “Relative error tensor low rank
approximation,” in SODA. arXiv preprint arXiv:1704.08246, 2019.

[54] S. Jiang, H. Pham, D. Woodruff, and R. Zhang, “Optimal sketching for
trace estimation,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[55] F. Hanzely, K. Mishchenko, and P. Richtárik, “Sega: Variance reduction
via gradient sketching,” Advances in Neural Information Processing
Systems, vol. 31, 2018.

[56] Y. Deng, Z. Li, and Z. Song, “An improved sample complexity for rank-1
matrix sensing,” arXiv preprint arXiv:2303.06895, 2023.

[57] L. Qin, Z. Song, and R. Zhang, “A general algorithm for solving rank-one
matrix sensing,” arXiv preprint arXiv:2303.12298, 2023.

[58] J. Alman and Z. Song, “Fast attention requires bounded entries,” arXiv
preprint arXiv:2302.13214, 2023.

[59] Z. Li, Z. Song, and T. Zhou, “Solving regularized exp, cosh and sinh
regression problems,” arXiv preprint arXiv:2303.15725, 2023.

[60] Y. Deng, Z. Li, and Z. Song, “Attention scheme inspired softmax
regression,” arXiv preprint arXiv:2304.10411, 2023.

[61] Y. Gao, Z. Song, and J. Yin, “An iterative algorithm for rescaled
hyperbolic functions regression,” arXiv preprint arXiv:2305.00660, 2023.

[62] R. Sinha, Z. Song, and T. Zhou, “A mathematical abstraction for balancing
the trade-off between creativity and reality in large language models,”
arXiv preprint arXiv:2306.02295, 2023.

[63] M. B. Cohen, B. Cousins, Y. T. Lee, and X. Yang, “A near-optimal
algorithm for approximating the john ellipsoid,” in Conference on
Learning Theory. PMLR, 2019, pp. 849–873.

[64] Z. Song, X. Yang, Y. Yang, and T. Zhou, “Faster algorithm for structured
john ellipsoid computation,” arXiv preprint arXiv:2211.14407, 2022.

[65] Y. Gu and Z. Song, “A faster small treewidth sdp solver,” arXiv preprint
arXiv:2211.06033, 2022.

[66] H. Avron, K. L. Clarkson, and D. P. Woodruff, “Faster kernel ridge
regression using sketching and preconditioning,” SIAM Journal on Matrix
Analysis and Applications, vol. 38, no. 4, pp. 1116–1138, 2017.

[67] T. D. Ahle, M. Kapralov, J. B. Knudsen, R. Pagh, A. Velingker,
D. P. Woodruff, and A. Zandieh, “Oblivious sketching of high-degree
polynomial kernels,” in Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 2020, pp. 141–160.

[68] Y. Chen and Y. Yang, “Accumulations of projections—a unified frame-
work for random sketches in kernel ridge regression,” in International
Conference on Artificial Intelligence and Statistics. PMLR, 2021, pp.
2953–2961.

[69] Z. Song, D. Woodruff, Z. Yu, and L. Zhang, “Fast sketching of polynomial
kernels of polynomial degree,” in International Conference on Machine
Learning. PMLR, 2021, pp. 9812–9823.

[70] Y. Gao, L. Qin, Z. Song, and Y. Wang, “A sublinear adversarial training
algorithm,” arXiv preprint arXiv:2208.05395, 2022.

[71] H. Jiang, Y. T. Lee, Z. Song, and S. C.-w. Wong, “An improved cutting
plane method for convex optimization, convex-concave games and its
applications,” in STOC, 2020.

[72] L. Zhang, “Speeding up optimizations via data structures: Faster search,
sample and maintenance,” Master’s thesis, Carnegie Mellon University,
2022.

[73] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman,
J. Gonzalez, and R. Arora, “Fetchsgd: Communication-efficient federated
learning with sketching,” in International Conference on Machine
Learning. PMLR, 2020, pp. 8253–8265.

[74] Z. Song, Y. Wang, Z. Yu, and L. Zhang, “Sketching for first order
method: efficient algorithm for low-bandwidth channel and vulnerability,”
in International Conference on Machine Learning (ICML). PMLR,
2023, pp. 32 365–32 417.

[75] Z. Song, X. Yang, Y. Yang, and L. Zhang, “Sketching meets differential
privacy: fast algorithm for dynamic kronecker projection maintenance,”
in International Conference on Machine Learning (ICML). PMLR,
2023, pp. 32 418–32 462.

[76] J. Andreas, D. Klein, and S. Levine, “Modular multitask reinforcement
learning with policy sketches,” in International Conference on Machine
Learning. PMLR, 2017, pp. 166–175.

[77] R. Wang, P. Zhong, S. S. Du, R. R. Salakhutdinov, and L. F. Yang,
“Planning with general objective functions: Going beyond total rewards,”
in Annual Conference on Neural Information Processing Systems
(NeurIPS), 2020.

[78] L. Qin, R. Jayaram, E. Shi, Z. Song, D. Zhuo, and S. Chu, “Adore:
Differentially oblivious relational database operators,” in VLDB, 2022.

[79] V. V. Williams, “Multiplying matrices faster than coppersmith-winograd,”
in Proceedings of the forty-fourth annual ACM symposium on Theory of
computing (STOC). ACM, 2012, pp. 887–898.

[80] F. Le Gall, “Powers of tensors and fast matrix multiplication,” in
Proceedings of the 39th international symposium on symbolic and
algebraic computation, 2014, pp. 296–303.

[81] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, vol. 58, no.
301, pp. 13–30, 1963.

	Introduction
	Our results
	Technique Overview

	Related Work
	Preliminary
	Algorithm for large inner product between two sets
	Correctness of FindCorrelated Algorithm
	Partition Collision Probability
	Running Time of FindCorrelated Algorithm
	Running time of finding heavy group pairs
	Running time of solving heavy group pairs
	Overall running time

	Deterministic Algorithm
	Speedup Neural Networks Training
	Conclusion
	References

